
The circuit represented below consists of a coil and a capacitor connected in parallel.

Calculate the following:

a) Z_{COIL}	17.561 Ω
b) pf of the coil	0.512
c) I_{COIL}	6.8332 A
d) I_{CAP}	19.9957 A
e) I_T	14.556 A
f) pf of the circuit	0.2416 (lead)
g) P_T	422.008 W
h) Q_T	1,695.360 VAR
i) Q_{XL}	704.112 VAR
j) Q_{xc}	2,399.484 VAR

COIL

Calculate Current in Coil

$$I_{COIL} = \frac{E}{Z_{COIL}}$$

$$I_{COIL} = \frac{120}{17.5612}$$

$$I_{COIL} = 6.8332$$

Convert Inductance to Inductive Reactance

$$XL = 2\pi fL$$

$$XL = 2\pi(60)(0.04)$$

$$XL = 15.07964$$

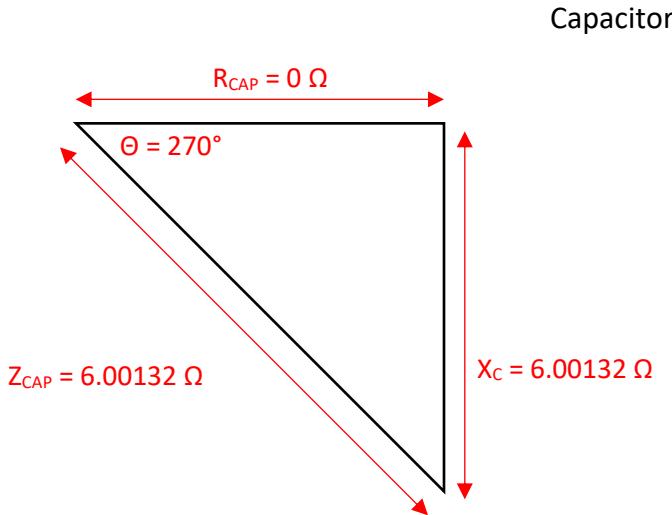
Calculate Power Factor

$$pf = \frac{R_{COIL}}{Z_{COIL}}$$

$$pf = \frac{9}{17.5612}$$

$$pf = 0.5125 \text{ (lag)}$$

$$pf \angle = \cos^{-1}(0.5125)$$


$$pf \angle = 59.1699$$

Calculate Coil Impedance

$$Z_{COIL} = \sqrt{9^2 + 15.07964^2}$$

$$Z_{COIL} = \sqrt{308.3955}$$

$$Z_{COIL} = 17.5612$$

Calculate Current in Capacitor

$$I_{CAP} = \frac{E}{Z_{CAP}}$$

$$I_{CAP} = \frac{120}{6.0013}$$

$$I_{CAP} = 19.9957 A$$

Convert Capacitance to Capacitive Reactance

$$XC = \frac{1}{2\pi f C}$$

$$XC = \frac{1}{2\pi(60)(442 \times 10^{-6})}$$

$$XC = 6.0013 \Omega$$

Calculate Power Factor

Capacitors have a Power Factor of 0

$$pf = 0$$

$$pf \angle = \cos^{-1}(0)$$

$$pf \angle = 90^\circ \text{ (lead)}$$

Coil has no resistance

Impedance = Capacitive Reactance

$$Z_{CAP} = XC$$

$$Z_{CAP} = 6.0013 \Omega$$

Circuit Current Totals

Item	Horizontal Values	Vertical Values
Coil = 6.8332 A @ 59.1699°	$I_{COIL} \times \cos(\Theta)$ 6.8332 x cos(59.1699) 3.50197 A	$I_{COIL} \times \sin(\Theta)$ 6.8332 x sin(59.1699) 5.8676 A
Capacitor = 19.9957 A @ 270°	$I_{COIL} \times \cos(\Theta)$ 6.8332 x cos(270) 0 A	$I_{COIL} \times \cos(\Theta)$ 6.8332 x cos(270) -19.9957 A
Total:	3.50197	-14.1281

Calculate Current

$$I_{CCT} = \sqrt{3.50197^2 + -14.1281^2}$$

$$I_{CCT} = \sqrt{211.867}$$

$$I_{CCT} = 14.556 A$$

Current Power Factor Angle

$$pf = \frac{3.50197}{14.556}$$

$$pf = 0.2416$$

$$pf \angle = \cos^{-1}(0.2416)$$

$$pf \angle = 76.019^\circ$$

Calculate Total Capacitive Reactance

$$Q_{XC} = E \times I_{CAP}$$

$$Q_{XC} = 120 \times 19.9957$$

$$Q_{XC} = 2,399.484 VAR$$

Calculate Total Inductive Reactance

$$Q_{XL} = E \times I_{XL(COIL)}$$

$$Q_{XL} = 120 \times 5.8676$$

$$Q_{XL} = 704.112 VAR$$

Calculate Total Power

$$P_T = E \times I \times pf$$

$$P_T = 120 \times 14.556 \times 0.2416$$

$$P_T = 422.008$$

Calculate Total Reactance

$$Q_T = Q_{XL} + Q_{XC}$$

$$Q_T = 704.112 \times 2,399.4719$$

$$Q_T = 1,695.360$$